
SLURM.
Our Way.

Douglas Jacobsen, James Botts, Helen He
NERSC

CUG 2016

NERSC Vital Statistics
● 860 active projects

○ DOE selects projects and PIs, allocates most of our computer
time

● 7750 active users
● 700+ codes both established and in-development
● edison XC30, 5586 ivybridge nodes

○ Primarily used for large capability jobs
○ Small - midrange as well
○ Moved edison from Oakland, CA to Berkeley, CA in Dec 2015

● cori phase 1 XC40, 1628 haswell nodes
○ DataWarp
○ realtime jobs for experimental facilities
○ massive quantities of serial jobs
○ regular workload too
○ shifter

Native SLURM at NERSC
Why native?

1. Enables direct support for serial jobs
2. Simplifies operation by easing

prolog/epilog access to compute nodes
3. Simplifies user experience

a. No shared batch-script nodes
b. Similar to other cluster systems

4. Enables new features and functionality
on existing systems

5. Creates a "platform for innovation"

slurmctld
(primary)

repurposed
"net" node

computecompute

slurmctld
(backup)

slurmdbd
mysql

ldap

rsip

eslogineslogineslogin

/dsl/opt/slurm/default

slurm.conf ControlAddr
unset to allow slurmctld
traffic to use ipogif0 owing
to lookup of nid0xxxx
hostname

/opt/slurm/default

slurm.conf ControlAddr
overridden to force
slurmctld traffic over
ethernet interface

slurmd slurmd

Basic CLE 5.2 Deployment
Challenge: Upgrade native SLURM
Issue: Installed to /dsl/opt/slurm/<version>, with
symlink to "default".
→ Changing symlink can have little impact on actual
version "pointed to" on compute nodes
Result: Often receive recommendation to reboot
supercomputer after upgrading.

Challenge: NERSC patches SLURM often and is not
interested in rebooting
Issue: /dsl DVS mount attribute cache prevents
proper dereference of "default" symlink
Solution: mount /dsl/opt/slurm a second time with
short (15s) attrcache
Result: NERSC can live upgrade without rebooting

Also moved slurm sysconfdir to /opt/slurm/etc,
where etc is a symlink to conf.<rev> to
workaround a rare dvs issue

Original Method:
/opt/slurm/15.08.xx_instTag_20150912xxxx
/opt/slurm/default -> /etc/alternatives/slurm
/etc/alternatives/slurm -> /opt/slurm/15.08.
xx_...

Production Method:
/opt/slurm/15.08.xx_instTag_20150912xxxx
/opt/slurm/default -> 15.08.xx_instTag_20150912xxxx

AND

Compute node /etc/fstab:
/opt/slurm /dsl/opt/slurm dvs \
 path=/dsl/opt/slurm,nodename=<dslNidList>, \
 <opts>,attrcache_timeout=15

Scaling Up

Sun Jan 24 04:51:29 2016: [unset]:_pmi_alps_get_apid:alps response not OKAY
Sun Jan 24 04:51:29 2016: [unset]:_pmi_init:_pmi_alps_init returned -1
[Sun Jan 24 04:51:30 2016] [c3-0c2s9n3] Fatal error in MPI_Init: Other MPI
error, error stack:
MPIR_Init_thread(547):
MPID_Init(203).......: channel initialization failed
MPID_Init(584).......: PMI2 init failed: 1
<repeat ad nauseum for every rank>

Challenge: Small and mid-scale jobs work great!
When MPI ranks exceed ~50,000 sometimes users get:

Workaround: Increase PMI timeout from 60s to something
bigger (app env): PMI_MMAP_SYNC_WAIT_TIME=300

lustre

compute

compute

compute

compute

...

Problem: srun directly execs the application from the hosting filesystem
location. FS cannot deliver the application at scale. aprun would copy the
executable to in-memory filesystem by default.

Solution: New 15.08 srun feature merging sbcast and srun
 srun --bcast=/tmp/a.out ./mpi/a.out
slurm 16.05 adds --compress option to deliver
executable in similar time as aprun

Other scaling topics:
● srun ports for stdout/err
● rsip port exhaustion
● slurm.conf TreeWidth
● Backfill tuning

Scheduling

Source: Brian Austin, NERSC

"NERSC users run applications
at every scale to conduct their
research."

Scheduling

cori

● "shared" partition
○ Up to 32 jobs per node

○ HINT: set --gres=craynetwork:0 in

job_submit.lua for shared jobs

○ allow users to submit 10,000 jobs with up

to 1,000 concurrently running

● "realtime" partition
○ Jobs must start within 2 minutes
○ Per-project limits implemented using QOS

○ Top priority jobs + exclusive access to

small number of nodes (92% utilized)

● burstbuffer QOS gives constant priority
boost to burst buffer jobs

edison

● big job metric - need to always be running
at least one "large" job (>682 nodes)

○ Give priority boost + discount

cori+edison

● debug partition
○ delivers debug-exclusive nodes

○ more exclusive nodes during business

hours

● regular partition
○ Highly utilized workhorse

● low and premium QOS
○ accessible in most partitions

● scavenger QOS
○ Once a user account balance drops below

zero, all jobs automatically put into

scavenger. Eligible for all partitions

except realtime

Scheduling - How Debug Works

nid00008 nid05586

debug

 regular

nid00008 nid05586

debug

regular

Nights and Weekends

Business Hours

Debug jobs:
● are smaller than "regular" jobs
● are shorter than "regular" jobs
● have access to all nodes in the system
● have advantageous priority

Day/Night:
● cron-run script manipulates regular

partition configuration (scontrol update
partition=regular…)

● during night mode adds a reservation to
prevent long running jobs from starting
on contended nodesthese concepts are extended for cori's

realtime and shared partitions

Scheduling - Backfill
now

time

j
o
b
s

and
 so

 o
n...

● NERSC typically has hundreds of
running jobs (thousands on cori)

● Queue frequently 10x larger (2,000 -
10,000 eligible jobs)

● Much parameter optimization required
to get things "working"

○ bf_interval
○ bf_max_job_partition
○ bf_max_job_user
○ …

● We still weren't getting our target
utilization (>95%)

● Still were having long waits with many
backfill targets in the queue

New Backfill Algorithm!
bf_min_prio_reserve

1. choose particular priority value
as threshold

2. Everything above threshold gets
resource reservations

3. Everything below is evaluated
with simple "start now" check
(NEW for SLURM)

Utilization jumped on average more
than 7% per day
Every backfill opportunity is realizedJob Prioritization

1. QOS
2. Aging (scaled to 1 point per minute)
3. Fairshare (up to 1440 points)

Primary Difficulty Faced

slurmctld
 xtcleanup_after

...
needs to become slurmctld

 xtcleanup_after

...

xtcheckhealth

xtcheckhealth

xtcheckhealth

xtcheckhealth

NHC doesn't run until entire allocation
has ended. In cases slow-to-complete
node, this holds large allocations idle.

If NHC is run from per-node epilog, each node
can complete independently, returning them to
service faster.

Issue is that a "completing" node, stuck
on unkillable process (or other similar
issue), becomes an emergency

Exciting slurm topics I'm not covering today
user training and tutorials

accounting/integrating slurmdbd with NERSC databases

user experience and documentation

my speculations about Rhine/Redwood

details of realtime implementation

burstbuffer / DataWarp integration

NERSC slurm plugins: vtune, blcr, shifter, completion

ccm

monitoring

reservations

knl

job_submit.lua

blowing up slurm
without getting burned

draining dvs service
nodes with prolog

Conclusions and Future Directions

● We have consistently delivered
highly usable systems with SLURM
since it was put on the systems

● Our typical experience is that bugs
are repaired same-or-next day

● Native SLURM is a new technology
that has rough edges with great
opportunity!

● Increasing resolution of binding
affinities

● Integrating Cori Phase 2 (+9300
KNL)

○ 11,000 node system

○ New processor requiring new NUMA

binding capabilities, node reboot

capabilities,

● Deploying SLURM on
Rhine/Redwood

○ Continuous delivery of configurations
○ Live rebuild/redeploy (less frequent)

● Scaling topologically aware
scheduling

Acknowledgements

NERSC

● Tina Declerck
● Ian Nascimento
● Stephen Leak

Cray

● Brian Gilmer

SchedMD

● Moe Jette
● Danny Auble
● Tim Wickberg
● Brian Christiansen

